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1]f Noise in Systems Showing Stochastic Resonance 

Lfiszl6 B. Kiss,1 Zoltfin Gingl, 1 Zsuzsanna M~irton, 2 Jhnos Kert6sz, 3 
Frank Moss,  4 Gabor Schmera, 5 and Adi Bulsara 5 

Stochastic resonator systems with input and/or output 1If noise have been 
studied. Disordered magnets/dielectrics serve as examples for the case of output 
1If noise with white noise (thermal excitation) at the input of the resonators. 
Due to the fluctuation-dissipation theorem, the output noise is related to the 
out-of-phase component of the periodic peak of the output spectrum. Spin 
glasses and ferromagnets serve as interesting examples of coupled stochastic 
resonators. A proper coupling can lead to an extremely large signal-to-noise 
ratio. As a model system, a 1/f-noise-driven Schmitt trigger has been 
investigated experimentally to study stochastic resonance with input 1/f noise. 
Under proper conditions, we have found several new nonlinearity effects, such 
as peaks at even harmonics, holes at even harmonics, and 1/f noise also in the 
output spectrum. 
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1. I N T R O D U C T I O N  

A physical system of randomly excited independent particles in a 
periodically modulated double potential well shows the well-known 
statistical phenomenon called stochastic resonance (SR), which was first 
introduced as a possible explanation of the observed periodicity in the 
recurrences of the earth's ice ages. (1 3) According to this view, net particle 
flows between the wells are induced by the external modulation so that 
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there exists a time-dependent population in each well which is coherent 
with the external field. 

SR has recently become the object of many investigations stimulated 
primarily by an interesting laser experiment in which it was observed and 
quantitatively studied. (4'51 A number of papers on the theory (6-8) as well as 
on analog simulations (3'9'1~ followed. The most important qualitative 
predictions of the theory and the results of the experiments/simulations can 
be summarized as follows: 

(i) The coherent part of output signal increases from zero with 
increasing noise, passing through a maximum at a strength of noise excita- 
tion such that the Kramers time becomes roughly comparable to twice the 
period of the modulating field. (4-1~ 

(ii) The power spectrum of the output signal contains very sharp, 
strong peaks (theoretically, delta functions) located at only the odd 
multiples of the modulating frequency, provided the unperturbed wells are 
symmetric. (8,10) 

(iii) Destruction of the well symmetry by the application of an 
external dc field (in addition to the modulation) results in the appearance 
of peaks at the even multiples of the modulating frequency. 

Note that under special conditions, both nonlinearity predictions (ii) 
and (iii) are violated, as is shown in Section 3 of the present paper. 
Namely, in the case of symmetric wells and 1If driving noise, peaks can be 
found also at even harmonics, and in special cases these peaks turn into 
holes. The last effect can be found even in the case of white driving noise, 
and it has been observed under certain conditions by other researchers, 
too.(11,12) 

In practical physical systems, at not too low frequencies (say, 
f >  1 MHz), spontaneous excitations very often can be represented by a 
white noise (that is, by a noise with a frequency-independent power density 
spectrum). (13) As a consequence, most of the above-cited publications are 
about the case of white noise excitation. Moreover, the case of colored 
noise is a complicated theoretical topic. (7'8) On the other hand, in the ultra- 
low-frequency limit (say, f ~ 1 Mhz), many physical and biological systems 
ghow !If noise, which is a colored noise with a logarithmically decaying 
autocorrelation function/14'15) Regarding the frequency domain, 1If noise 
is a spontaneous fluctuation with a power density spectrum roughly 
proportional to 1If through many decades of frequency, usually down to 
the frequency limit given by the finite duration of the measurement. The 
wide occurrence of 1If noise in nature implies the problem of 1/f noise at 
SR. As 1If noise has been found also in neuron signals, this problem has 
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become more important: according to recent interesting speculations, (16 18~ 
SR may enhance the flow of information in sensory neurons of living systems. 

In this paper, we shall deal with the presence of input/output 1If noise 
at SR. In Section 2 disordered magnets/dielectrics are viewed as stochastic 
resonator systems where (without ac excitation) an input white noise and 
an output 1If noise are present. Important  consequences are pointed out, 
such as: ac excitation, the out-of-phase component of the periodic response 
is connected with the background noise of SR; a ferromagnetic-like 
coupling between the stochastic resonators leads to a model of 
ferromagnets, that is, to a system with superstrong SR; and coupling of 
randomly mixed ferromagnetic/antiferromagnetic types leads to a model of 
spin glasses implying long-time relaxation and memory effects. 

2. S T O C H A S T I C  R E S O N A N C E  A N D  1 / f  NOISE IN M A G N E T S  
A N D  DIELECTRICS 

First, we would like to point out that an elementary magnetization 
moment (spin) or an electrical polarization moment (dipole moment) in a 
double-well potential can be a very natural representation of SR (19) 

provided that the spin or dipole moment is coupled to a heat bath. A flip 
of spin or dipole moment can be considered as a jump from one well 
into another or back. An ensemble of such systems can often be a represen- 
tation of random magnets/dielectrics. (2~ 

The complex ac susceptibility ~c(x)=~c'(co)+i~c'(co) of the system 
describes the response of magnetization/polarization of the material to an 
external periodic excitation. For the case of symmetric double wells, the 
result is well known (see refs. 21 and 22 and references therein): 

N A M  
tc'(e), T, U) - k T[1 + 0)2"C 2 exp( 2 U/k T) ] (1) 

NAMcoro exp(U/kT) 
tc"(co, T, U) - kT[1 + cozr 2 exp(2U/kT) ] (2) 

(NAM)  z 
Ix(co, T, U)I 2 - (kT)2[ 1 + co2ro 2 exp(ZU/kT)] (3) 

where N is the number of independent double wells, A is a linear coupling 
term between the external field and the asymmetry induced in the depth of 
double wells, M is the value of the elementary magnetic polarization 
moment, U is the potential barrier between the wells, and ro is the 
reciprocal mean attempt frequency. 

We note that while Eqs. (1) (3) were well known half a century ago 



454 Kiss et  al.  

and Eq. (3) describes the strength of the harmonic peak in the power 
spectrum of the magnetic/dielectric response, it describes the familiar SR, 
too. To show this, we have to replace the elementary thermal energy kT by 
the variance D of the white noise excitation in a stochastic resonator. 

The analogy with SR is even more explicit if we consider the signal- 
to-noise ratio of the response. According to the fluctuation-dissipation 
theorem, the power spectral density S of thermal noise in magnetization/ 
polarization is just 

4kT~c"(co, T, U) 4NAM~oro exp(U/kT) 
S(co, T, U ) -  - (4) 

co 1 + co2z 2 exp(2U/kT) ] 

So, the signal-to-noise ratio (SNR) at an external periodic excitation 
Hext sin(~ot) is 

He2xt I~c(c0, T, U) I 2 H2xt NAM 
SNR = 3(co) S(co, T, U) = fi(co) 4(kr)2ro exp(U/kr) (5) 

which, apart from some well parameters, is exactly the formula previously 
obtained for SR in the adiabatic, small-perturbation approximations. (4 6) 
This perfect analogy is not surprising, because the fluctuation of the 
thermal energy on the thermal energy on the microscopic scale (~ct) is 
indeed known to be a white noise well beyond microwave frequencies at 
not too low temperaturesJ TM 

In disordered magnets/dielectrics there is a wide distribution g(U) of 
barrier energies. (21'22) In this case, the resultant susceptibility components 
~C'res and ~C'r'es are given naturally from the integrals 

K';es(gO , T ) =  K'(gO, T~ U) g(U) dU (6) 

and 

K;'~s(e) , T )=  K'(co, T, U)g(U)dU (7) 

respectively. As is well known, a uniform distribution g (U)=  const implies 
a lossy part ~'r'es which is independent of the frequency. Then, according to 
the fluctuation-dissipation theorem [first part of Eq. (4)] there is a pure 
1If noise in the spontaneous magnetization/polarization. In practical cases, 
g(U) is not uniform, but it is a flat distribution with a small relative change 
through an energy interval m. That implies a "practical" 1If noise, that is, 
S(f)  oc 1If through many decades of frequency. (23 25) 
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It is important to note that (within the inaccuracy of experiments) 
noise in spontaneous magnetization satisfies the first part of Eq. (4) even 
in spin glasses, (26) which can be viewed as systems of randomly coupled 
stochastic resonators (see below). That fact is very interesting, because 
spin-glass systems are out of thermal equilibrium, so the fluctuation- 

~c" " T) has a dissipation theorem does not hold there. (25'26) Moreover, ~estCO, 
very weak frequency dependence below the melting temperature of the 
glassy state. Correspondingly, the spectrum of spontaneous magnetization 
is of 1If shape even in spin glasses/26) 

In conclusion, during the measurement of ac susceptibility, disordered 
magnets/dielectrics can very often be represented by a system of a large 
number of independent stochastic resonators. These elementary resonators 
are driven by independent white noise sources (thermal excitation). A flat 
distribution of barrier energies yields a 1If noise at the output, that is, in 
the resultant magnetization/polarization of these materials. Interestingly, 
this is the case even in spin-glass systems, where there is a strong coupling 
between stochastic resonators. 

Before closing this section, disregarding the problem of 1If noise, we 
would like to summarize the important points which we can learn about 
stochastic resonance from the example of magnetic materials and present 
some implications and speculations: 

(a) The output background noise spectrum is related to the out- 
of-phase component ~c"(~o) of the susceptibility which is given by the 
cosinusoidal component of the output periodic peak when a sinusoidal 
input periodic signal is applied. In the case of materials, •"(e)) is propor- 
tional to the dissipative loss during sinusoidal excitation, that is, a small 
loss implies a low noise. Note that the measurement of x"(co) gives the 
same information as the measurement of the output background noise 
spectrum; however, the time requirement of the measurement (for a given 
accuracy) can be very much shorter when the measurement of the 
susceptibility is applied. 

(b) The signal-to-noise ratio (SNR) is proportional to I~c(co)[2/~c'(co), 
that is, a large susceptibility with a small lossy part is the necessary condi- 
tion to get a good result when SR is used in noise filtering applications. 

(c) At this point, the analogy with magnetic materials leads us to the 
case of ferromagnetic materials. In technology, both the above conditions 
are standard requirements and high tech materials can reach I~c(co)12 ~ 1012 
with a very small lossy part. Consequently, a system of stochastic 
resonators with a properly chosen ferromagnetic coupling between the 
resonators should be the object of investigations when the aim is a 
large SNR. In Fig. 1, a system of detectors and coupled resonators 
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Fig. 1. 
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Detector-stochastic resonator system to reach extra high signal-to-noise ratio 
(reduction of detector noise). 

(ferromagnetic coupling) is shown which can model ferromagnets. The 
detectors observe the same periodic signal and add their independent 
detector noise to this signal. The resonators are interacting via an 
optimized ferromagnetic coupling and the output signal of the system is the 
sum of resonator outputs. This system can show a "super" stochastic 
resonance if its parameters are properly chosen. 

(d) If in the above system (Fig. 1) the sign and strength of inter- 
action between resonators is spatially random, then we have a model of 
spin glasses. It is interesting to note that while the SNR in a spin glass is 
much lower than in a ferromagnet, analysis of spin-glass systems may be 
relevant in studying information processing in the brain, ~27) That arrange- 
ment may be a special application of coupled stochastic resonators for 
modeling biological information processing. (18) 

Finally, we would like to cite some interesting articles (28 32) which give 
relevant approaches to the problem of coupled resonators. 

3. S T O C H A S T I C  R E S O N A N C E  W I T H  1 / f  NOISE AT THE I N P U T  

These investigations have been carried out on a Schmitt trigger of a 
symmetric hysteresis with threshold voltage + Ut and - U t  (see Fig. 2), 
which represent a square-shaped double potential well with a barrier height 
of U,. The input was fed by the sum of the sinusoidal signal (283.5 Hz) and 
a Gaussian 1If noise. The key element of the noise generator was a MOS 
field effect transistor and the resulting noise was a rather good 1If noise 
(power exponent: 0.96) with cutoff frequencies of 0.1 Hz and 10kHz, 
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Fig. 2. Experimental setup for studying stochastic resonance with 1If noise excitation. 

respectively. The two-stage noise resulting at the output of the Schmitt 
trigger has been developed by a PC and an FFT program. The time dura- 
tion of the measurement was approximately 0.1 sec. After calculating the 
spectrum of the output noise, the measurement sequence was repeated 
several hundred times and averaged to get a sufficient accuracy of results. 
The input and output signals of the Schmitt trigger were visualized on an 
oscilloscope to get information about the temporal behavior of signals and 
to avoid possible artifacts due to parasite effects in the electronic circuitry. 

Figure 3 shows a typical experimental SR curve. Comparing the 
measured curve with the theoretical prediction for white noise, one can see 
that the resonance is less sharp in the case of 1/f noise. This difference 
originates from the low-frequency cutoff of the 1If noise (0.1 Hz), which is 
two decades lower than the characteristic frequency (10 Hz) coming from 
the duration (0.1 sec) of one measurement record. In this case, the 1If noise 
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Fig. 3. Signal-to-noise ratio at the output of the Schmitt trigger at 1If noise excitation, 
U,=0.31 V, Uo=0.1 V. Solid line represents the theoretical curve with the same U,, U o. 
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components in the range 0.1 10Hz correspond to a slowly fluctuating 
asymmetry in the depth of the potential wells. This means that the 
instantaneous barrier height seen by the particle is slowly fluctuating. As a 
consequence, the optimal noise intensity for the SR maximum is also 
slowly fluctuating. That  implies a less sharp SR for 1If noise than for white 
noise. To prove the correctness of the above argument, we made a simula- 
tion for such a case, when the low-frequency cutoff of 1If noise was identi- 
cal with the reciprocal measurement time. In that case, the above effect 
does not exist and the SR curve for 1If noise fits very well the theoretical 
curve for white noise (see Fig. 4). 

The above-mentioned 1/f-noise-induced (fluctuating) asymmetry leads 
to another interesting property of SR, namely, to peaks of the output noise 
spectrum at even harmonics (see Fig. 5). 

When the noise is still small but the sinusoidal excitation becomes 
so large that Uo is comparable to U,, then a new interesting nonlinear 
phenomenon occurs: instead of peaks at even harmonics, we can observe 
local minima ("holes") at these frequencies (see Figs. 6 and 7). That strange 
behavior has been observed by others (tI'12) at white noise excitation. One 
of the authors (Z.G.) found the explanation of this effect: when these condi- 
tions are present, the output signal of the Schmitt trigger is an almost peri- 
odic square wave. The switching time instants tn (n = 1, 2,...) of the square 
wave can be given as tn = Nto/2 + rn, where To is the reciprocal frequency 
of sinusoidal excitation and r,  is a small random perturbation term. For  
white noise excitation, rn is uncorrelated for any n; for 1If noise excitation, 
r,  has a slowly decaying correlation function. For  the uncorrelated case, 

Z 
m 

0 1 2 3 

D [arb.unit] 

Fig. 4. Signal-t0-noise ratio at 1/f noise driving when the low-frequency cutoff of 1/f noise 
is equal to the reciprocal time duration of the measurement record (computer modeling). 
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Fig. 5. 
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Peaks in the output spectrum at even harmonics at 1/f noise driving (see text), 
U~=0.31 V, Uo=0.24V , D=0 .26V.  

the power spectrum of such a perturbed square wave has zero values at 
even harmonics, as can be shown by elementary calculations. For the case 
of 1If noise, the spectrum has local minima at even harmonics. Increasing 
the noise amplitude at the input will destroy the periodic-like behavior 
of the output square wave, so that several random switching events can 
happen within To~2, which will "wash out" the holes from the spectrum 
(see Figs. 6 and 7). 

Fig. 6. 
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Holes in the output spectrum at even harmonics at l / f  noise driving (see text). 
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460 Kiss et al. 

Fig. 7. 

1 '  

7 

I 

4 ,  

0 

~e 2rid halmonic 

2 hole at the 4th harmonic 

l 
200 300 

f [arb.unit] 

Holes in the output spectrum at even harmonics at white noise driving (see text). 
Ut = 1.0 V, U 0 = 0.8 V, D = 0.2 V. 

Finally, another interesting nonlinear phenomenon can be found 
without input periodic signal when the input 1If noise is very large: 
D > U,. In this case, the output spectrum turns out to be 1/f, too (Fig. 8). 
That is a very remarkable effect, because under these conditions the output 
noise is given by the signum operation on the input noise (the hysteresis is 
much smaller than the driving noise amplitude). It seems that the zero- 
crossing-time distribution has a crucial role in determining the spectrum of 

Fig. 8. 
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Output spectrum of the Schmitt trigger at very large 1If noise driving (see text), 
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Gaussian 1If noise. We note that according to further studies (33) (which are 
beyond the scope of the present paper), a truncation of a Gaussian 
1/f-noise time signal at arbitrary level of amplitude does not change the 1If 
spectrum. That proves the great role of the distribution of level crossing 
times in the existence of the 1If noise. 

In conclusion, we list the remarkable new effects which have been 
found at 1/f input noise: 

(a) In the linear case (Uo ~ D ~ Ut), there usually is a less sharp SR 
curve than that at white noise input. 

(b) In the case of weak nonlinearity (Uo ~-D ~ Ut) there are peaks in 
the output noise spectrum at even harmonics even if the double potential 
well is symmetric. 

(c) In the case of strong nonlinearity (D ~ Uo ~ Ut), there are holes 
in the output noise spectrum at even harmonics. 

(d) In the case of noisxe overloading the system (Uo~-O, Ut~D), 
the output noise spectrum becomes l/f, too. The spectrum of Gaussian 1If 
noise turns out to be invariant against the signum operation. 
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